翻訳と辞書
Words near each other
・ 7-Deoxyloganic acid
・ 7-deoxyloganin 7-hydroxylase
・ 7-Dimethylallyltryptophan synthase
・ 7-Dorpenomloop Aalburg
・ 7-Eleven
・ 7-Eleven (cycling team)
・ 7-Eleven (disambiguation)
・ 7-Eleven Speak Out Wireless
・ 7-epi-alpha-selinene synthase
・ 7-epi-sesquithujene synthase
・ 7-Hydroxy-2,3,4,8-tetramethoxyphenanthrene
・ 7-Hydroxyamoxapine
・ 7-Hydroxymethyl chlorophyll a reductase
・ 7-Hydroxymitragynine
・ 7-Keto-DHEA
7-limit tuning
・ 7-Methyl-α-ethyltryptamine
・ 7-Methylguanosine
・ 7-Methylindole
・ 7-Methylxanthine demethylase
・ 7-methylxanthosine synthase
・ 7-Nitroindazole
・ 7-O-Methylluteone
・ 7-OH-DPAT
・ 7-orthoplex
・ 7-PET
・ 7-Phloroeckol
・ 7-Rooms of Gloom
・ 7-simplex
・ 7-simplex honeycomb


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

7-limit tuning : ウィキペディア英語版
7-limit tuning

7-limit or septimal tunings and intervals are musical instrument tunings that have a limit of seven: the largest number contained in the interval ratios between pitches is a multiple of seven.
For example, the greater just minor seventh, 9:5 is a 5-limit ratio, the harmonic seventh has the ratio 7:4 and is thus a septimal interval. Similarly, the septimal chromatic semitone, 21:20, is a septimal interval as 21÷7=3. The harmonic seventh is used in the barbershop seventh chord and music. () Compositions with septimal tunings include La Monte Young's ''The Well-Tuned Piano'', Ben Johnston's String Quartet No. 4, and Lou Harrison's ''Incidental Music for Corneille's Cinna''.
The Great Highland Bagpipe is tuned to a ten-note seven-limit scale:〔Benson, Dave (2007). ''Music: A Mathematical Offering'', p.212. ISBN 9780521853873.〕 1:1, 9:8, 5:4, 4:3, 27:20, 3:2, 5:3, 7:4, 16:9, 9:5.
In the 2nd century Ptolemy described the septimal intervals: 7/4, 8/7, 7/6, 12/7, 7/5, and 10/7.〔Partch, Harry (2009). ''Genesis of a Music: An Account of a Creative Work, Its Roots, and Its Fulfillments'', p.90-1. ISBN 9780786751006.〕
Those considering 7 to be consonant include Marin Mersenne,〔Shirlaw, Matthew (1900). ''Theory of Harmony'', p.32. ISBN 978-1-4510-1534-8.〕 Giuseppe Tartini, Leonhard Euler, François-Joseph Fétis, J. A. Serre, Moritz Hauptmann, Alexander John Ellis, Wilfred Perrett, Max Friedrich Meyer.〔
Those considering 7 to be dissonant include Gioseffo Zarlino, René Descartes, Jean-Philippe Rameau, Hermann von Helmholtz, A. J. von Öttingen, Hugo Riemann, Colin Brown, and Paul Hindemith ("chaos"〔Hindemith, Paul (1942). ''Craft of Musical Composition'', v.1, p.38. ISBN 0901938300.〕).〔
==Lattice and tonality diamond==

The 7-limit tonality diamond:
This diamond contains four identities (1, 3, 5, 7 (P5, M3, H7 )). Similarly, the 2,3,5,7 pitch lattice contains four identities and thus 3-4 axes, but a potentially infinite number of pitches. LaMonte Young created a lattice containing only identities 3 and 7, thus requiring only two axes, for ''The Well-Tuned Piano''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「7-limit tuning」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.